首页> 外文会议>International conference on advances in computing, communications and informatics >Effort estimation of web-based applications using machine learning techniques
【24h】

Effort estimation of web-based applications using machine learning techniques

机译:使用机器学习技术估算基于Web的应用程序的工作量

获取原文

摘要

Effort estimation techniques play a crucial role in planning of the development of web-based applications. Web-based software projects, considered in the present-day scenario are different from conventional object oriented projects, and hence the task of effort estimation is a complex one. It is observed that the literature do not provide a guidance to the analysts to use a particular model as being the most suitable one, for effort estimation of web-based applications. A number of models like IFPUG Function Point Model, NESMA, MARK-II, etc. are being considered for web effort estimation purpose. The efficiency of these models can be improved by employing certain intelligent techniques on them. Keeping in mind the end goal to enhance the efficiency of evaluating the effort required to develop web-based application, certain machine learning techniques such as Stochastic Gradient Boosting and Support Vector Regression Kernels are considered in this study for effort estimation of web-based applications using IFPUG Function Point approach. The ISBSG dataset, Release 12 has been considered in this study for obtaining the IFPUG Function Point data. The performance effort estimation models based on various machine learning techniques is assessed with the help of certain metrics, in order to examine them critically.
机译:努力估算技术在计划基于Web的应用程序的开发中起着至关重要的作用。当前场景中考虑的基于Web的软件项目与常规的面向对象的项目不同,因此,工作量估算的任务是一项复杂的工作。可以观察到,文献并未为分析人员提供指导以使用特定模型作为最适合的模型,以用于基于Web的应用程序的工作量估算。为了进行网络工作量估算,正在考虑使用许多模型,例如IFPUG功能点模型,NESMA,MARK-II等。通过在模型上采用某些智能技术,可以提高这些模型的效率。考虑到最终目标是提高评估开发基于Web的应用程序所需的工作效率的最终目标,在本研究中考虑了某些机器学习技术(例如随机梯度提升和支持向量回归核),以便使用以下方法评估基于Web的应用程序的工作量IFPUG功能点方法。为了获得IFPUG功能点数据,本研究考虑了ISBSG数据集第12版。在某些指标的帮助下,对基于各种机器学习技术的绩效估算模型进行了评估,以便对其进行严格检查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号