首页> 外文会议>International Conference on Advanced Science and Engineering >Developed NSGA-II to Solve Multi Objective Optimization Models in WSNs
【24h】

Developed NSGA-II to Solve Multi Objective Optimization Models in WSNs

机译:开发NSGA-II解决WSN中的多目标优化模型

获取原文

摘要

'Wireless sensor networks (WSNs) are spatially distributed at diverse locations to monitor different physical or environmental conditions'. Subject to the sensing part duty, sensors can transmit their data through the network to other nodes or to the base station. The growth of WSN applications was motivated to assist the awkward activities in military, industrial and healthcare applications. Sensors size and cost restrictions add many constraints on its performance such as energy, computational speed, 'communications bandwidth' and memory. Most of the real-world engineering optimization problems represent multi-Objective problems. Objectives are often conflicting. Multi-objective optimization (MOO) is the optimization of conflicting objectives. Their solutions are set of answers that describe the best tradeoff between conflicting objectives. In this paper, a developed non-dominated sorting genetic algorithm (NSGA-II) will be proposed to address certain WSN issues. It aims to control the overlapping level between nodes via unit desk graph connectivity model. A suggested Multi-objective optimization model will also help in defining the best tradeoff between network coverage and connectivity as two competing objectives.
机译:“无线传感器网络(WSN)在空间上分布在不同的位置,以监视不同的物理或环境状况”。根据传感部分的职责,传感器可以通过网络将其数据传输到其他节点或基站。 WSN应用程序的增长是为了协助军事,工业和医疗保健应用程序中的尴尬活动。传感器的尺寸和成本限制对它的性能增加了许多限制,例如能量,计算速度,“通信带宽”和内存。现实世界中的大多数工程优化问题都代表多目标问题。目标常常是矛盾的。多目标优化(MOO)是冲突目标的优化。他们的解决方案是一组答案,描述了相互矛盾的目标之间的最佳权衡。在本文中,将提出一种开发的非支配排序遗传算法(NSGA-II),以解决某些WSN问题。它旨在通过单元桌面图连接模型来控制节点之间的重叠级别。建议的多目标优化模型还将有助于将网络覆盖范围和连接性之间的最佳权衡定义为两个相互竞争的目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号