首页> 外文会议>International Conference on Advanced Computer Science and information Systems >Wavelength Selection of Persimmon Leafusing Decision Tree Method in Visible Near-Infrared Imaging
【24h】

Wavelength Selection of Persimmon Leafusing Decision Tree Method in Visible Near-Infrared Imaging

机译:柿叶的决策树方法在可见光近红外成像中的波长选择

获取原文

摘要

Phenolic compounds are one of the secondary metabolites in vegetation. In general, total phenolic content can be measured using a biological approach that requires some preparation time and destructive. In this study, total phenolic content was predicted using Visible Near-Infrared (VNIR) Imaging approach. VNIR analysis in the spectral range of 400-1000 nm was used to predict the total phenolic content of velvet apple leaf non-destructively. Spectral features from samples are calculated based on the average reflectances area of leaves with a spatial dimension of 20×20 pixels in 224 spectral features. The optimal feature selection was performed using the Decision Tree (DT) method. Decision Tree Regression (DTR) algorithm was applied to predict measured values based on spectral features. Sample data evaluated with cross-validation to calculated system perform. The best performance of prediction system which has 30 optimal wavelength band with the determination coefficient (R
机译:酚类化合物是植被中的次生代谢产物之一。通常,总酚含量可以使用需要一定制备时间和破坏性的生物学方法进行测量。在这项研究中,使用可见近红外(VNIR)成像方法预测了总酚含量。通过在400-1000 nm光谱范围内进行VNIR分析,可以无损地预测天鹅绒苹果叶片的总酚含量。基于224个光谱特征中空间尺寸为20×20像素的叶子的平均反射率区域,计算样本的光谱特征。使用决策树(DT)方法执行最佳特征选择。决策树回归(DTR)算法用于基于光谱特征预测测量值。通过交叉验证评估的样本数据可以计算出系统性能。具有30个最佳波长带且确定系数(R

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号