首页> 外文会议>International Conference on Advanced Computer Science and information Systems >Relocating Local Outliers Produced by K-means and K-medoids Using Local Outlier Rectifier V.2.0
【24h】

Relocating Local Outliers Produced by K-means and K-medoids Using Local Outlier Rectifier V.2.0

机译:使用本地离群值整流器V.2.0重定位由K均值和K质素产生的本地离群值

获取原文

摘要

The extensive growth in the field of information and communication technology allows easy capture of massive amounts of valuable data in different areas. These data are used in various data mining techniques. However, in some cases, the presence of outliers in the dataset exists. One of the categories of an outlier is the local outlier. Local outliers are data points that deviate locally from the cluster center. They occur when the cluster center, known as centroid or medoid, cannot represent all the data members in the cluster. The unrepresented data are mistakenly classified to their closest clusters, making them local outliers. With this, the study aims to address the problem of local outliers produced by K-means and K-medoids. The Local Outlier Rectifier V.2.0 (LOR V.2.0) is a method used to relocate local outliers to their correct clusters. The simulations show that when LOR V.2.0 is partnered with K-means, it was able to relocate 35.37%, 34.78%, 25%, and 12.28% local outliers of Ionosphere, Breast Cancer Wisconsin, Iris, and Breast Cancer Coimbra datasets, respectively. On the contrary, when LOR V.2.0 is partnered with K-medoids, 29.67% of Breast Cancer Wisconsin, 29.11% of Ionosphere, 25.0% of Iris, and 10.34% of Breast Cancer Coimbra local outliers were transferred to their correct clusters. The result also indicates that the method works better when partnered with K-means.
机译:信息和通信技术领域的广泛发展使得可以轻松捕获不同领域中的大量有价值的数据。这些数据用于各种数据挖掘技术。但是,在某些情况下,数据集中存在异常值。离群值的类别之一是局部离群值。局部异常值是从群集中心局部偏离的数据点。当群集中心(称为质心或质心)无法代表群集中的所有数据成员时,就会发生它们。未表示的数据被错误地分类为最接近的簇,从而使它们成为局部异常值。基于此,本研究旨在解决由K均值和K均值产生的局部离群值的问题。本地离群值整流器V.2.0(LOR V.2.0)是一种用于将本地离群值重新定位到其正确群集的方法。模拟显示,当LOR V.2.0与K-means配合使用时,它能够重新定位电离层,威斯康星州乳腺癌,虹膜和乳腺癌科英布拉数据集的35.37%,34.78%,25%和12.28%的局部离群值,分别。相反,当LOR V.2.0与K-medoids结合使用时,乳腺癌威斯康星州的29.67%,电离层的29.11%,虹膜的25.0%和科英布拉乳腺癌的10.34%局部异常值已转移到它们的正确簇中。结果还表明,与K-means配合使用时,该方法效果更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号