首页> 外文会议>International Conference on Advanced Computer Science and information Systems >Recognizing Word Gesture in Sign System for Indonesian Language (SIBI) Sentences Using DeepCNN and BiLSTM
【24h】

Recognizing Word Gesture in Sign System for Indonesian Language (SIBI) Sentences Using DeepCNN and BiLSTM

机译:使用DeepCNN和BiLSTM识别印尼语(SIBI)句子符号系统中的手势

获取原文

摘要

SIBI is a sign language that is officially used in Indonesia. The use of SIBI is often found to be a problem because of the many gestures that have to be remembered. This study aims to recognize SIBI gestures by extracting hand and facial features which are then classified using Bidirectional Long ShortTerm Memory (BiLSTM). The feature extraction used in this research is Deep Convolutional Neural Network (DeepCNN) such as ResNet50 and MobileNetV2, where both models are used as a comparison. This study also compares the performance and computational time between the two models which is expected to be applied to smartphones later, where both models can now be implemented on smartphones. The results showed that the use of ResNet50-BiLSTM model have better performance than MobileNetV2-BiLSTM which is 99.89%. However, if it will be applied to mobile architecture, MobileNetV2-BiLSTM is superior because it has a faster computational time with a performance that is not significantly different when compared to ResNet50-BiLSTM.
机译:SIBI是印度尼西亚正式使用的手语。由于必须记住许多手势,因此经常发现使用SIBI是一个问题。这项研究旨在通过提取手和面部特征来识别SIBI手势,然后使用双向长期短期记忆(BiLSTM)对它们进行分类。在这项研究中使用的特征提取是深度卷积神经网络(DeepCNN),例如ResNet50和MobileNetV2,其中两种模型都用作比较。这项研究还比较了这两种模型之间的性能和计算时间,这些模型和模型预计将在以后应用于智能手机,这两种模型现在都可以在智能手机上实现。结果表明,使用ResNet50-BiLSTM模型具有优于MobileNetV2-BiLSTM的99.89%的性能。但是,如果将其应用于移动体系结构,则MobileNetV2-BiLSTM将具有优越的性能,因为它具有更快的计算时间,并且与ResNet50-BiLSTM相比,性能没有显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号