首页> 外文会议>Intelligent System Applications to Power Systems, 2009. ISAP '09 >Verifying the Use of Evolving Fuzzy Systems for Multi-Step Ahead Daily Inflow Forecasting
【24h】

Verifying the Use of Evolving Fuzzy Systems for Multi-Step Ahead Daily Inflow Forecasting

机译:验证不断发展的模糊系统在多步骤日流量预测中的应用

获取原文

摘要

This study presents a prediction system based on evolving fuzzy models and a bottom-up approach for daily streamflow forecasting. Prediction models are based on adaptive Takagi-Sugeno fuzzy inference systems. These models make use of a sequential learning approach for updating their own structure and parameters over time according to changes or variations identified in the series, whereas rainfall and runoff information is processed at each time instant. Models are adjusted following a bottom-up approach, which consists of dividing the global problem into sub-problems, and each sub-problem is resolved separately. Final estimate is given by the aggregation of the parts. The proposed approach is compared to the Soil Moisture Accounting Procedure (SMAP), a hydrological model used by various hydroelectric companies of the Brazilian electrical sector. Simulation studies indicate that the evolving fuzzy system presents an adequate performance, leading to a promising alternative for daily streamflow forecasting. Indeed, results are improved when predictors are combined, primarily for a multistep ahead prediction task.
机译:本研究提出了一种基于不断发展的模糊模型和自下而上的日常流量预测方法的预测系统。预测模型基于自适应Takagi-Sugeno模糊推理系统。这些模型利用顺序学习方法,根据序列中确定的变化或变化随时间更新其自身的结构和参数,而降雨和径流信息则在每个时刻进行处理。模型采用自下而上的方法进行调整,该方法包括将全局问题划分为子问题,并且每个子问题都得到单独解决。最终估计是通过各部分的汇总得出的。将该提议的方法与土壤水分核算程序(SMAP)进行了比较,后者是巴西电力部门的各种水力发电公司使用的水文模型。仿真研究表明,不断发展的模糊系统表现出足够的性能,从而为每日流量预报提供了有希望的替代方案。确实,将预测器组合在一起(主要用于多步提前预测任务)时,结果会得到改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号