首页> 外文会议>2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001. Proceedings, 2001 >A selective learning algorithm for certain types of learningfailure in multi-layer perceptrons
【24h】

A selective learning algorithm for certain types of learningfailure in multi-layer perceptrons

机译:多层感知器中某些类型学习失败的选择性学习算法

获取原文
获取原文并翻译 | 示例

摘要

Summary form only given, as follows. A simple selective learningnalgorithm for use with multilayer perceptrons is presented. Thisnalgorithm has proved useful in certain types of problems where learningnfailure occurs using standard backpropagation. Examples of thesenproblems are included. The algorithm is based on the RMS output errorncomputed across all output nodes and all training patterns. The learningnrate is decreased for all individual output nodes each time the error isnless than a user-chosen multiple of the RMS error corresponding to thenprevious pass. This algorithm has produced convergence where thenstandard fixed-again backpropagation failed
机译:仅给出摘要表格,如下。提出了一种与多层感知器一起使用的简单的选择性学习算法。该算法已证明对使用标准反向传播发生学习失败的某些类型的问题很有用。包括问题。该算法基于跨所有输出节点和所有训练模式计算出的RMS输出误差。每当误差不小于用户选择的对应于先前通过的RMS误差的倍数时,所有单个输出节点的学习率都会降低。该算法产生收敛,然后标准的再次固定反向传播失败

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号