首页> 外文会议>Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods >Artificial neural network models for texture classification via the radon transform
【24h】

Artificial neural network models for texture classification via the radon transform

机译:通过radon变换进行纹理分类的人工神经网络模型

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Texture is generally recognized as being fundamental to perception. A taxonomy of problems encountered within the context of texture analysis could be that of classification/discrimination, description, and segmentation. In this paper we suggest a novel artificial neural network (ANN) architecture for features extraction and texture recognition. There is evidence which suggests that the analysis of stimulus by visual system might involve a set of quasi-independent mechanisms called channels which could be conveniently characterized in the spatial frequency domain. In our model we use an FT feature space with angular and radial bins that characterize spatial domain filters to extract features. The extracted features are then used as input for the recognition stage. In order to evaluate the 2-D FT coefficients we use the Radon transform. The usage of the Radon transform simplifies the ANN model significantly. We suggest an electronic implementation of the ANN model for feature extraction, using a Connected Network Adaptive ProcessorS (CNAPS) chip designed by Adaptive Solutions Inc. We also develop software to simulate the ANN model with the Radon transform. We use a three stage back-propagation network as a classifier. We have used ten different texture patterns to test our ANN model.!21
机译:摘要:纹理通常被认为是感知的基础。在纹理分析的上下文中遇到的问题的分类法可以是分类/区分,描述和分割。在本文中,我们提出了一种新颖的人工神经网络(ANN)架构,用于特征提取和纹理识别。有证据表明,视觉系统对刺激的分析可能涉及一组称为通道的准独立机制,可以在空间频域中方便地对其进行表征。在我们的模型中,我们将FT特征空间与带有角度和径向分箱的FT一起使用,它们表征了空间域滤波器以提取特征。然后将提取的特征用作识别阶段的输入。为了评估二维FT系数,我们使用Radon变换。 Radon变换的使用大大简化了ANN模型。我们建议使用由Adaptive Solutions Inc.设计的连接网络自适应处理器(CNAPS)芯片,以电子方式实现特征提取的ANN模型。我们还开发了可通过Radon变换模拟ANN模型的软件。我们使用三阶段反向传播网络作为分类器。我们使用了十种不同的纹理图案来测试我们的ANN模型!21

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号