首页> 外文会议>Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods >Improving the robustness of edge- and region-based range image segmentation
【24h】

Improving the robustness of edge- and region-based range image segmentation

机译:提高基于边缘和区域的距离图像分割的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Abstract: In our previous work, we presented a segmentation method that combines useful properties of edge and region-based segmentation. In the region-based approach, pixels are classified into 10 surface types according to the spatial properties in the neighborhood of each pixel. Surface differential properties are approximated using least squares estimation. Geometrically coherent regions are formed by grouping connected pixels of the same surface type. A two stage method which detects both step and roof edges is used for edge detection. Preliminary edge and region-based segmentation results are overlaid to achieve the final segmentation. This paper presents our recent results which improve the robustness of the segmentation method. Accurate estimation of the differential properties of the surfaces is essential if one is to gain good segmentation. The least squares estimation with constant coefficient window operators gives good results when only white Gaussian distributed noise occurs, and pixels in the neighborhood are from one statistical population. In order to decrease the influence of very deviant pixel values that occur near region boundaries or due to noise, we implemented two robust estimation methods. One is iterative reweighting least squares method that uses a variable order model and the other is a least trimmed square method. The robust and least squares approaches are compared and their effects on surface classification are reported. Also the validity of the assumptions on the data, model and estimation methods used are considered. Both synthetic and real range images are used for test images.!17
机译:摘要:在我们之前的工作中,我们提出了一种分割方法,该方法结合了基于边缘和区域的分割的有用属性。在基于区域的方法中,根据每个像素附近的空间特性,将像素分为10种表面类型。使用最小二乘估计来近似表面微分特性。通过对相同表面类型的连接像素进行分组来形成几何上相干的区域。同时检测台阶和屋顶边缘的两阶段方法用于边缘检测。覆盖基于边缘和区域的初步分割结果以实现最终分割。本文介绍了我们最近的结果,这些结果提高了分割方法的鲁棒性。如果要获得良好的分割效果,则必须准确估计表面的微分特性。当仅出现白色高斯分布噪声,并且附近的像素来自一个统计种群时,使用恒定系数窗口算子进行的最小二乘估计会产生良好的结果。为了减少在区域边界附近或由于噪声而产生的非常偏差像素值的影响,我们实现了两种鲁棒的估计方法。一种是使用可变阶数模型的迭代加权最小二乘方法,另一种是最小修剪平方法。比较了鲁棒和最小二乘法,并报告了它们对表面分类的影响。还考虑了所用数据,模型和估计方法的假设的有效性。合成图像和真实范围图像都用于测试图像。!17

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号