首页> 外文会议>Intelligent Robots and Computer Vision X: Neural, Biological, and 3-D Methods >Model-based edge position and orientation measurement using neural networks
【24h】

Model-based edge position and orientation measurement using neural networks

机译:使用神经网络的基于模型的边缘位置和方向测量

获取原文
获取原文并翻译 | 示例

摘要

Abstract: This paper proposes a new model fit type edge feature measurement method. In this new method, an accurate edge model, which explains well the practical edge gray level patterns in an actually observed image, is made by considering the point spread function in the image recording process as well as the edge features, that is, edge position and orientation. This method consists of two preparation steps and a measurement step. Step 1: Gray level patterns with various edge features values are generated on an edge pixel and its surrounding pixels based on this model. Step 2: The gray levels are fed, as teaching signals, into error back propagation type neural networks with a 3-layer structure. The mapping parameters used to determine the edge features are obtained from the gray level patterns. Step 3: The edge features are calculated by feeding the gray levels in an observed image into the networks after learning. Experimental results proved that this method can determine edge position and orientation with a high accuracy of 0.07 pixels and 0.8$DGR@, respectively.!10
机译:摘要:本文提出了一种新的模型拟合型边缘特征测量方法。在这种新方法中,通过考虑图像记录过程中的点扩散函数以及边缘特征(即边缘位置),可以创建一个精确的边缘模型,该模型可以很好地解释实际观察到的图像中的实际边缘灰度图案。和方向。该方法包括两个准备步骤和一个测量步骤。步骤1:根据此模型,在边缘像素及其周围像素上生成具有各种边缘特征值的灰度图案。步骤2:将灰度作为教学信号馈入具有三层结构的误差反向传播型神经网络。用于确定边缘特征的映射参数是从灰度图案获得的。步骤3:在学习后,通过将观察到的图像中的灰度级输入到网络中来计算边缘特征。实验结果证明,该方法能够以0.07像素和0.8 $ DGR @的高精度确定边缘位置和方向。!10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号