首页> 外文会议>Intelligent data engineering and automated learning-IDEAL 2009 >Evolving Fuzzy Systems Based on the eTS Learning Algorithm for the Valuation of Residential Premises
【24h】

Evolving Fuzzy Systems Based on the eTS Learning Algorithm for the Valuation of Residential Premises

机译:基于eTS学习算法的进化模糊系统在住宅物业估价中的应用。

获取原文
获取原文并翻译 | 示例

摘要

An attempt has been made to employ evolving Takagi-Sugeno algorithm (eTS) to built models assisting property valuation on the basis of actual data drawn from cadastral system, registry of sales transactions, and a cadastral map. Seven methods of feature selection were applied an evaluated. The eTS performance was compared to three algorithms implemented in KEEL, including decision trees for regression, neural network, and support vector machine. The results confirmed the advantages of the eTS algorithm.
机译:尝试使用演化的Takagi-Sugeno算法(eTS)建立基于地籍系统,销售交易记录和地籍图的实际数据来辅助房地产评估的模型。评估了七个特征选择方法。将eTS性能与KEEL中实现的三种算法进行了比较,包括回归决策树,神经网络和支持向量机。结果证实了eTS算法的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号