【24h】

Machine Learning Framework for Classification in Medicine and Biology

机译:医学和生物学分类机器学习框架

获取原文
获取原文并翻译 | 示例

摘要

Systems modeling and quantitative analysis of large amounts of complex clinical and biological data may help to identify discriminatory patterns that can uncover health risks, detect early disease formation, monitor treatment and prognosis, and predict treatment outcome. In this talk, we describe a machine-learning framework for classification in medicine and biology. It consists of a pattern recognition module, a feature selection module, and a classification modeler and solver. The pattern recognition module involves automatic image analysis, genomic pattern recognition, and spectrum pattern extractions. The feature selection module consists of a combinatorial selection algorithm where discriminatory patterns are extracted from among a large set of pattern attributes. These modules are wrapped around the classification modeler and solver into a machine learning framework. The classification modeler and solver consist of novel optimization-based predictive models that maximize the correct classification while constraining the inter-group mis-classifications. The classification/predictive models 1) have the ability to classify any number of distinct groups; 2) allow incorporation of heterogeneous, and continuous/time-dependent types of attributes as input; 3) utilize a high-dimensional data transformation that minimizes noise and errors in biological and clinical data; 4) incorporate a reserved-judgement region that provides a safeguard against over-training; and 5) have successive multi-stage classification capability. Successful applications of our model to developing rules for gene silencing in cancer cells, predicting the immunity of vaccines, identifying the cognitive status of individuals, and predicting metabolite concentrations in humans will be discussed. We acknowledge our clinical/biological collaborators: Dr. Vertino (Winship Cancer Institute, Emory), Drs. Pulendran and Ahmed (Emory Vaccine Center), Dr. Levey (Neurodegenerative Disease and Alzheimer's Disease), and Dr. Jones (Clinical Biomarkers, Emory).
机译:对大量复杂的临床和生物学数据进行系统建模和定量分析,可能有助于识别可发现健康风险,发现早期疾病形成,监测治疗和预后以及预测治疗结果的歧视性模式。在本演讲中,我们描述了一种用于医学和生物学分类的机器学习框架。它由模式识别模块,特征选择模块以及分类建模器和求解器组成。模式识别模块涉及自动图像分析,基因组模式识别和光谱模式提取。特征选择模块由组合选择算法组成,在该组合选择算法中,从大量的图案属性中提取出可识别的图案。这些模块围绕分类建模器和求解器包装到机器学习框架中。分类建模器和求解器由新颖的基于优化的预测模型组成,该模型在限制组间错误分类的同时,最大化了正确的分类。分类/预测模型1)能够对任意数量的不同组进行分类; 2)允许将异构的,连续的/时间相关的属性类型合并为输入; 3)利用高维数据转换,以最大程度地减少生物学和临床数据中的噪声和错误; 4)纳入保留裁判区,以防止过度训练; 5)具有连续的多阶段分类能力。我们的模型在开发用于癌细胞基因沉默的规则,预测疫苗的免疫力,识别个体的认知状态以及预测人类体内代谢物浓度方面的成功应用将得到讨论。我们感谢我们的临床/生物学合作者:Vertino博士(埃默里Winship Cancer Institute,博士)。 Pulendran和Ahmed(埃默里疫苗中心),Levey博士(神经变性疾病和阿尔茨海默氏病)和Jones博士(临床生物标记物,Emory)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号