首页> 外文会议>Instruments, methods, and missions for astrobiology XVII >Ribosome dynamics and the evolutionary history of ribosomes
【24h】

Ribosome dynamics and the evolutionary history of ribosomes

机译:核糖体动力学与核糖体的进化史

获取原文
获取原文并翻译 | 示例

摘要

The ribosome is a dynamic nanomachine responsible for coded protein synthesis. Its major subsystems were essentially in place at the time of the last universal common ancestor (LUCA). Ribosome evolutionary history thus potentially provides a window into the pre- LUCA world. This history begins with the origins of the peptidyl transferase center where the actual peptide is synthesized and then continues over an extended timeframe as additional functional centers including the GTPase center are added. The large ribosomal RNAs (rRNAs) have grown over time by an accretion process and a model exists that proposes a relative age of each accreted element. We have compared atomic resolution ribosome structures before and after EF-G bound GTP hydrolysis and thereby identified the location of 23 pivot points in the large rRNAs that facilitate ribosome dynamics. Pivots in small subunit helices h28 and h44 appear to be especially central to the process and according to the accretion model significantly older than the other helices containing pivots. Overall, the results suggest that ribosomal dynamics occurred in two phases. In the first phase, an inherently mobile h28/h44 combination provided the flexibility needed to create a dynamic ribosome that was essentially a Brownian machine. This addition likely made coded peptide synthesis possible by facilitating movement of a primitive mRNA. During the second phase, addition of pivoting elements and the creation of a factor binding site allowed the regulation of the inherent motion created by h28/h44. All of these events likely occurred before LUCA.
机译:核糖体是负责编码蛋白质合成的动态纳米机器。它的主要子系统在上次通用祖先(LUCA)时就已经到位。因此,核糖体的进化史可能为进入LUCA前世界提供了一个窗口。此历史始于肽基转移酶中心的起源,在此处合成实际的肽,然后在延长的时间范围内继续进行,因为添加了包括GTPase中心在内的其他功能中心。大的核糖体RNA(rRNA)通过吸积过程随时间增长,并且存在一个模型,该模型提出了每个吸积元素的相对年龄。我们比较了EF-G结合GTP水解前后的原子分辨率核糖体结构,从而确定了促进核糖体动力学的大型rRNA中23个枢轴点的位置。小亚基螺旋体h28和h44中的枢轴似乎在该过程中尤为重要,并且根据吸积模型,其年龄明显大于其他包含枢轴的螺旋体。总体而言,结果表明核糖体动力学发生在两个阶段。在第一阶段,固有的可移动h28 / h44组合可提供创建动态核糖体所需的灵活性,该核糖体本质上是布朗尼机器。该添加可能通过促进原始mRNA的移动使编码肽的合成成为可能。在第二阶段中,添加枢轴元素和创建因子结合位点可调节h28 / h44产生的固有运动。所有这些事件都可能在LUCA之前发生。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号