首页> 外文会议>Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIX >Human target identification and automated shape based target recognition algorithms using target silhouette
【24h】

Human target identification and automated shape based target recognition algorithms using target silhouette

机译:人体目标识别和基于目标轮廓的基于形状的自动目标识别算法

获取原文
获取原文并翻译 | 示例

摘要

Human target identification performance based on target silhouettes is measured and compared to that of complete targets. The target silhouette identification performance of automated region based and contour based shape identification algorithms are also compared. The region based algorithms of interest are Zernike Moment Descriptor (ZMD), Geometric Moment Descriptor (GMD), and Grid Descriptor (GD) while the contour based algorithms considered are Fourier Descriptor (FD), Multiscale Fourier Descriptor (MFD), and Curvature Scale Space Descriptor (CS). The results from the human perception experiments indicate that at high levels of degradation, human identification of target based on silhouettes is better than that of complete targets. The shape recognition algorithm comparison shows that GD performs best, very closely followed by ZMD. In general region based shape algorithms perform better that contour based shape algorithms.
机译:测量基于目标轮廓的人类目标识别性能,并将其与完整目标的性能进行比较。还比较了基于自动区域和基于轮廓的形状识别算法的目标轮廓识别性能。感兴趣的基于区域的算法是Zernike矩描述符(ZMD),几何矩描述符(GMD)和网格描述符(GD),而考虑的基于轮廓的算法是傅里叶描述符(FD),多尺度傅里叶描述符(MFD)和曲率标度空间描述符(CS)。人类感知实验的结果表明,在高度退化的情况下,人类基于轮廓的目标识别比完全目标的识别要好。形状识别算法的比较表明,GD性能最佳,紧随其后的是ZMD。通常,基于区域的形状算法比基于轮廓的形状算法性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号