首页> 外文会议>Information security and privacy >The Security of Public Key Cryptosystems Based on Integer Factorization
【24h】

The Security of Public Key Cryptosystems Based on Integer Factorization

机译:基于整数分解的公钥密码系统的安全性

获取原文
获取原文并翻译 | 示例

摘要

Public-key encryption schemes are substantially slower than symmetric-key encryption algorithms. Therefore public-key encryption is used in practice together with symmetric algorithms in hybrid systems. The paper gives a survey of the state of art in public-key cryptography. Thereby special attention is payed to the different realizations of RSA-type cryptosystems. Though ElGamal-type cryptosystems on elliptic curves are of great interest in light of recent advances, the original RSA-cryptosystem is still the most widely used public-key procedure. After a comparison of public-key cryptosystems based on integer factorization and discrete logarithms a detailed cryptanalysis of RSA-type cryptosystems is given. Known strengths and weaknesses are described and recommendations for the choice of secure parameters are given. Obviously the RSA cryptosystem can be broken if its modulus can be factored. It is an open question if breaking RSA is equivalent to factoring the modulus. The paper presents several modified RSA cryptosystems for which breaking is as difficult as factoring the modulus and gives a general theory for such systems.
机译:公钥加密方案比对称密钥加密算法要慢得多。因此,在混合系统中,公钥加密实际上与对称算法一起使用。本文对公钥密码技术的现状进行了概述。因此,要特别注意RSA类型密码系统的不同实现。尽管根据最近的进展,椭圆曲线上的ElGamal型密码系统引起了人们的极大兴趣,但是原始的RSA密码系统仍然是使用最广泛的公钥过程。在比较了基于整数分解和离散对数的公钥密码系统之后,对RSA型密码系统进行了详细的密码分析。描述了已知的优点和缺点,并提供了选择安全参数的建议。显然,如果可以考虑其模数,则可以破解RSA密码系统。打破RSA是否等效于分解模数是一个悬而未决的问题。本文提出了几种修改后的RSA密码系统,其破解与分解模数一样困难,并给出了此类系统的一般理论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号