【24h】

Time-Out Bloom Filter: A New Sampling Method for Recording More Flows

机译:超时布隆过滤器:一种用于记录更多流量的新采样方法

获取原文
获取原文并翻译 | 示例

摘要

Packet sampling is widely deployed to generate flow records on high speed links. However, random sampling in which 1 in N packets is chosen suffers from omitting majority of flows, most of which are short flows (within N packets). Although usage-based applications work well by sampling long flows and neglecting short ones, there are many other applications which depend on nearly per-flow information. In this paper, a novel sampling method is proposed to remedy the flow loss flaw. We use a Time-out Bloom Filter to alleviate the sampling bias towards long flows. Compared with random sampling, short flows have a much greater probability to be sampled while long flows are always sampled, but with much fewer sampled packets. Experimental results show that, with the same sampling rate, our solution records several times more short flows than random sampling. Particularly, up to 99% original flows can be retrieved. Besides, we also propose an adaptive TBF system in fast SRAM to perform online sampling.
机译:数据包采样被广泛部署以在高速链路上生成流记录。但是,选择了N个数据包中的1个的随机采样会遗漏大多数流,其中大多数是短流(在N个数据包内)。尽管基于使用的应用程序可以通过对长流进行采样而忽略短流来很好地工作,但是还有许多其他应用程序几乎都依赖于每个流的信息。本文提出了一种新的采样方法来弥补流量损失缺陷。我们使用超时布隆过滤器来缓解长流量的采样偏差。与随机采样相比,短流具有更高的采样概率,而长流始终具有采样能力,但采样包却少得多。实验结果表明,在相同的采样率下,我们的解决方案记录的短流比随机采样多出几倍。特别是,最多可以检索99%的原始流。此外,我们还提出了一种在快速SRAM中自适应的TBF系统来进行在线采样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号