首页> 外文会议>Industrial Electronics and Applications: Program and Abstracts >Comb-Filtering-Based Signal Reconstruction for Bearing Fault Detection
【24h】

Comb-Filtering-Based Signal Reconstruction for Bearing Fault Detection

机译:基于梳状滤波的信号重构在轴承故障检测中的应用

获取原文

摘要

Faulty bearings generate impulsive vibrations during operation and this provides the basis for bearing fault detection by vibration measurement and analysis. However, in a situation where a mechanical system produces strong impulsive vibrations by its nature even when the system is in good condition, the traditional impulse detection based method for bearing fault diagnosis become ineffective. To solve this problem, this paper proposes a new methodology that first removes the strong impulses generated by normal operation of the system by comb-filtering of the original vibration signal in frequency domain, then reconstructs the time signal by inverse Fourier transform of the filtered spectrum, and finally calculates the crest factor of the reconstructed signal. The proposed method was proved effective in its application to highly impulsive plunger-pump-driving gearboxes.
机译:故障轴承会在运行过程中产生脉冲振动,这为通过振动测量和分析检测轴承故障提供了基础。但是,即使机械系统处于良好状态,机械系统仍会因其自身性质而产生强烈的脉冲振动,因此基于传统的基于脉冲检测的轴承故障诊断方法变得无效。为了解决这个问题,本文提出了一种新的方法,该方法首先通过对原始振动信号进行频域梳状滤波来消除系统正常运行中产生的强脉冲,然后通过滤波后的频谱进行逆傅立叶变换来重构时间信号。 ,最后计算出重构信号的波峰因数。实践证明,该方法可有效应用于高脉冲柱塞泵驱动齿轮箱。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号