首页> 外文会议>Indonesian Association for Pattern Recognition International Conference >Preliminary Review on Population Based Approaches for Physician Scheduling
【24h】

Preliminary Review on Population Based Approaches for Physician Scheduling

机译:基于人口的医师调度方法初探

获取原文

摘要

Physician scheduling is an important scheduling in hospital and has been in researches for years. In the scheduling, a mathematical model is developed to represent personnel arrangement in a hospital. Afterward, we need algorithm to solve the mathematical model in which they can be exact or metaheuristic algorithm. Exact algorithm can provide a global optimum in the solution, however finding optimal solution for complex and vast number of constraints is time consuming since physician scheduling is NP-Hard problem. On the other hand, metaheuristic approach provides solution to the scheduling problems in much less time compared to exact algorithm. Therefore, metaheuristic approach is considered more appropriate to solve physician scheduling problem. In this paper, we conduct a preliminary review of the latest population bases approaches in hospital related scheduling, especially Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) based algorithms, to understand strengths and weaknesses of each algorithm and recommend the most suitable one applicable to solve physician scheduling problem. Future work will be suggested for further improvements on the algorithm.
机译:医师调度是医院中重要的调度,并且已经进行了多年研究。在计划中,开发了一个数学模型来表示医院中的人员安排。之后,我们需要算法来求解数学模型,其中它们可以是精确算法或元启发式算法。精确算法可以在解决方案中提供全局最优值,但是,由于医师调度是NP-Hard问题,因此为复杂且数量众多的约束条件找到最优解决方案非常耗时。另一方面,与精确算法相比,元启发式方法可在更少的时间内为调度问题提供解决方案。因此,元启发式方法被认为更适合解决医师调度问题。在本文中,我们对医院相关调度中的最新人口基础方法进行了初步回顾,尤其是基于遗传算法(GA)和基于粒子群优化(PSO)的算法,以了解每种算法的优缺点并推荐最合适的一种适用于解决医师调度问题。建议对该算法进行进一步的改进,以进行进一步的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号