首页> 外文会议>Independent Component Analyses, Compressive Sampling, Large Data Analyses, Neural Networks, Biosystems, and Nanoengineering XIII >Auxiliary function approach to independent component analysis and independent vector analysis
【24h】

Auxiliary function approach to independent component analysis and independent vector analysis

机译:独立成分分析和独立向量分析的辅助函数方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we review an auxiliary function approach to independent component analysis (ICA) and independent vector analysis (IVA). The derived algorithm consists of two alternative updates: 1) weighted covariance matrix update and 2) demixing matrix update, which include no tuning parameters such as a step size in the gradient descent method. The monotonic decrease of the objective function is guaranteed by the principle of the auxiliary function method. The experimental evaluation shows that the derived update rules yield faster convergence and better results than natural gradient updates. An efficient implementation on a mobile phone is also presented.
机译:在本文中,我们回顾了一种辅助函数方法,用于独立分量分析(ICA)和独立矢量分析(IVA)。派生算法由两个替代更新组成:1)加权协方差矩阵更新和2)混合矩阵更新,其中不包含诸如梯度下降法中的步长之类的调整参数。辅助函数法的原理保证了目标函数的单调递减。实验评估表明,与自然梯度更新相比,导出的更新规则产生更快的收敛性和更好的结果。还提出了一种在手机上的有效实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号