首页> 外文会议>Image and Video Communications and Processing 2000 >Facial expression recognition on a people-dependent personal facial expression space (PFES)
【24h】

Facial expression recognition on a people-dependent personal facial expression space (PFES)

机译:基于人的个人面部表情空间(PFES)上的面部表情识别

获取原文
获取原文并翻译 | 示例

摘要

Abstract: In this paper, a person-specific facial expression recognition method which is based on Personal Facial Expression Space (PFES) is presented. The multidimensional scaling maps facial images as points in lower dimensions in PFES. It reflects personality of facial expressions as it is based on the peak instant of facial expression images of a specific person. In constructing PFES for a person, his/her whole normalized facial image is considered as a single pattern without block segmentation and differences of 2-D DCT coefficients from neutral facial image of the same person are used as features. Therefore, in the early part of the paper, separation characteristics of facial expressions in the frequency domain are analyzed using a still facial image database which consists of neutral, smile, anger, surprise and sadness facial images for each of 60 Japanese males (300 facial images). Results show that facial expression categories are well separated in the low frequency domain. PFES is constructed using multidimensional scaling by taking these low frequency domain of differences of 2-D DCT coefficients as features. On the PFES, trajectory of a facial image sequence of a person can be calculated in real time. Based on this trajectory, facial expressions can be recognized. Experimental results show the effectiveness of this method. !14
机译:摘要:本文提出了一种基于个人面部表情空间(PFES)的特定于人的面部表情识别方法。多维缩放将面部图像映射为PFES中较低维度的点。它基于特定人的面部表情图像的峰值瞬间来反映面部表情的个性。在构造一个人的PFES时,他/她的整个标准化人脸图像被视为一个没有块分割的单一模式,并且二维DCT系数与同一人的中性人脸图像的差异被用作特征。因此,在本文的前半部分,使用静态面部图像数据库分析了频域中面部表情的分离特征,该数据库由60名日本男性(300名面部男性)中立,微笑,愤怒,惊奇和悲伤的面部图像组成图片)。结果表明,面部表情类别在低频域中很好地分离。通过将二维DCT系数差异的这些低频域作为特征,使用多维缩放来构建PFES。在PFES上,可以实时计算人的面部图像序列的轨迹。基于该轨迹,可以识别面部表情。实验结果证明了该方法的有效性。 !14

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号