【24h】

Unsupervised SAR images change detection with hidden Markov chains on a sliding window

机译:无监督SAR图像使用滑动窗口上的隐马尔可夫链进行变化检测

获取原文
获取原文并翻译 | 示例

摘要

This work deals with unsupervised change detection in bi-date Synthetic Aperture Radar (SAR) images. Whatever the indicator of change used, e.g. log-ratio or Kullback-Leibler divergence, we have observed poor quality change maps for some events when using the Hidden Markov Chain (HMC) model we focus on in this work. The main reason comes from the stationary assumption involved in this model -and in most Markovian models such as Hidden Markov Random Fields-, which can not be justified in most observed scenes: changed areas are not necessarily stationary in the image. Besides the few non stationary Markov models proposed in the literature, the aim of this paper is to describe a pragmatic solution to tackle stationarity by using a sliding window strategy. In this algorithm, the criterion image is scanned pixel by pixel, and a classical HMC model is applied only on neighboring pixels. By moving the window through the image, the process is able to produce a change map which can better exhibit non stationary changes than the classical HMC applied directly on the whole criterion image. Special care is devoted to the estimation of the number of classes in each window, which can vary from one (no change) to three (positive change, negative change and no change) by using the corrected Akaike Information Criterion (AICc) suited to small samples. The quality assessment of the proposed approach is achieved with speckle-simulated images in which simulated changes is introduced. The windowed strategy is also evaluated with a pair of RADARSAT images bracketing the Nyiragongo volcano eruption event in January 2002. The available ground truth confirms the effectiveness of the proposed approach compared to a classical HMC-based strategy.
机译:这项工作涉及双日期合成孔径雷达(SAR)图像中的无监督变化检测。无论使用哪种变化指标,例如对数比或Kullback-Leibler散度,当我们使用本文重​​点研究的隐马尔可夫链(HMC)模型时,我们观察到某些事件的质量变化图不佳。主要原因来自此模型中涉及的平稳假设-以及大多数隐马尔可夫随机场等大多数马尔可夫模型中,在大多数观察到的场景中均无法证明其合理性:变化的区域不一定在图像中处于静止状态。除了文献中提出的少数非平稳马尔可夫模型外,本文的目的是描述一种实用的解决方案,即使用滑动窗口策略来解决平稳性问题。在该算法中,标准图像逐像素进行扫描,并且经典HMC模型仅应用于相邻像素。通过在图像中移动窗口,与直接应用于整个标准图像的经典HMC相比,该过程能够生成变化图,该变化图可以更好地展现非平稳变化。特别注意估计每个窗口中的类数,通过使用适合于小样本的校正的赤池信息准则(AICc),可以从一个(不变)到三个(正变,负变和无变)变化。样品。提出的方法的质量评估是通过斑点模拟图像实现的,其中引入了模拟变化。还用一对在2002年1月的Nyiragongo火山喷发事件包围的RADARSAT图像对窗口化策略进行了评估。与基于经典HMC的策略相比,可用的地面真相证实了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号