首页> 外文会议>Image and signal processing for remote sensing XX >Procedure to detect impervious surfaces using satellite images and light detection and ranging (LIDAR) data
【24h】

Procedure to detect impervious surfaces using satellite images and light detection and ranging (LIDAR) data

机译:使用卫星图像和光检测与测距(LIDAR)数据检测不透水表面的程序

获取原文
获取原文并翻译 | 示例

摘要

The detection of impervious surfaces is an important issue in the study of urban and rural environments. Imperviousness refers to water's inability to pass through a surface. Although impervious surfaces represent a small percentage of the Earth's surface, knowledge of their locations is relevant to planning and managing human activities. Impervious structures are primarily manmade (e.g., roads and rooftops). Impervious surfaces are an environmental concern because many processes that modify the normal function of land, air, and water resources are initiated during their construction. This paper presents a novel method of identifying impervious surfaces using satellite images and light detection and ranging (LIDAR) data. The inputs for the procedure are SPOT images formed by four spectral bands (corresponding to red, green, near-infrared and mid-infrared wavelengths), a digital terrain model, and an .las file. The proposed method computes five decision indexes from the input data to classify the studied area into two categories: impervious (subdivided into buildings and roads) and non-impervious surfaces. The impervious class is divided into two subclasses because the elements forming this category (mainly roads and rooftops) have different spectral and height properties, and it is difficult to combine these elements into one group. The classification is conducted using a decision tree procedure. For every decision index, a threshold is set for which every surface is considered impervious or non-impervious. The proposed method has been applied to four different regions located in the north, center, and south of Spain, providing satisfactory results for every dataset.
机译:防渗表面的检测是研究城市和乡村环境的重要问题。防渗性是指水无法通过表面。尽管不透水的表面仅占地球表面的一小部分,但了解其位置与规划和管理人类活动有关。防渗结构主要是人造的(例如,道路和屋顶)。防渗表面是一个环境问题,因为在施工过程中会启动许多改变土地,空气和水资源正常功能的过程。本文提出了一种使用卫星图像和光检测与测距(LIDAR)数据识别不透水表面的新颖方法。该过程的输入是由四个光谱带(对应于红色,绿色,近红外和中红外波长)形成的SPOT图像,一个数字地形模型和一个.las文件。所提出的方法根据输入数据计算五个决策指标,将研究区域分为两类:不透水(细分为建筑物和道路)和不透水表面。不可渗透的类别分为两个子类别,因为形成该类别的元素(主要是道路和屋顶)具有不同的光谱和高度属性,并且很难将这些元素组合为一组。使用决策树过程进行分类。对于每个决策索引,都设置了一个阈值,对于该阈值,每个表面都被视为不可渗透或不可渗透。所提出的方法已应用于西班牙北部,中部和南部的四个不同区域,为每个数据集提供了令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号