首页> 外文会议>Image and signal processing for remote sensing XVIII >A Rooftop Extraction Method Using Color Feature, Height Map Information and Road Information
【24h】

A Rooftop Extraction Method Using Color Feature, Height Map Information and Road Information

机译:利用颜色特征,高度图信息和道路信息的屋顶提取方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new method for rooftop extraction that integrates color features, height map, and road information in a level set based segmentation framework. The proposed method consists of two steps: rooftop detection and rooftop segmentation. The first step requires the user to provide a few example rooftops from which the color distribution of rooftop pixels is estimated. For better robustness, we obtain superpixels of the input satellite image, and then classify each superpixel as rooftop or non-rooftop based on its color features. Using the height map, we can remove those detected rooftop candidates with small height values. Level set based segmentation of each detected rooftop is then performed based on color and height information, by incorporating a shape-prior term that allows the evolving contour to take on the desired rectangle shape. This requires performing rectangle fitting to the evolving contour, which can be guided by the road information to improve the fitting accuracy. The performance of the proposed method has been evaluated on a satellite image of 1 km×1 km in area, with a resolution of one meter per pixel. The method achieves detection rate of 88.0% and false alarm rate of 9.5%. The average Dice's coefficient over 433 detected rooftops is 73.4%. These results demonstrate that by integrating the height map in rooftop detection and by incorporating road information and rectangle fitting in a level set based segmentation framework, the proposed method provides an effective and useful tool for rooftop extraction from satellite images.
机译:本文提出了一种新的屋顶提取方法,该方法将颜色特征,高度图和道路信息集成在基于级别集的分割框架中。所提出的方法包括两个步骤:屋顶检测和屋顶分割。第一步要求用户提供一些示例屋顶,据此可以估算屋顶像素的颜色分布。为了获得更好的鲁棒性,我们获取输入卫星图像的超像素,然后根据其颜色特征将每个超像素分类为屋顶或非屋顶。使用高度图,我们可以删除那些检测到的具有较小高度值的屋顶候选对象。然后,通过并入形状优先项来允许颜色轮廓和高度信息进行分割,从而对每个检测到的屋顶进行基于水平集的分割,该术语允许不断变化的轮廓呈现所需的矩形形状。这就需要对不断变化的轮廓进行矩形拟合,可以通过道路信息进行引导以提高拟合精度。该方法的性能已经在面积为1 km×1 km的卫星图像上进行了评估,分辨率为每像素一米。该方法的检测率为88.0%,误报率为9.5%。在433个检测到的屋顶上,平均骰子系数为73.4%。这些结果表明,通过将高度图集成在屋顶检测中,并将道路信息和矩形拟合合并到基于水平集的分割框架中,该方法为从卫星图像中提取屋顶提供了有效且有用的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号