首页> 外文会议>Image and signal processing for remote sensing XVI >Infrared Stationary Object Acquisition and Moving Object Tracking
【24h】

Infrared Stationary Object Acquisition and Moving Object Tracking

机译:红外静止物体采集和运动物体跟踪

获取原文
获取原文并翻译 | 示例

摘要

Currently, there is much interest in developing electro-optic and infrared stationary and moving object acquisition and tracking algorithms for Intelligence, Surveillance, and Reconnaissance (ISR) and other applications. Many of the existing EO/IR object acquisition and tracking techniques work well for good-quality images, when object parameters such as size are well-known. However, when dealing with noisy and distorted imagery many techniques are unable to acquire stationary objects nor acquire and track moving objects.rnThis paper will discuss two inter-related problems: (1) stationary object detection and segmentation and (2) moving object acquisition and tracking in a sequence of images that are acquired via an IR sensor mounted on both stationary and moving platforms.rn1. A stationary object detection and segmentation algorithm called "Weighted Adaptive Iterative Statistical Threshold (WAIST)" will be described. The WAIST algorithm takes any intensity image and separates object pixels from the background or clutter pixels. Two common image processing techniques are nearest neighbors clustering and statistical thresholding. The WAIST algorithm uses both techniques iteratively, making best use of both techniques. Statistical threshold takes advantage of the fact that object pixels will exist above a threshold based on the statistical properties of the known noise pixels in the image. The nearest neighbor technique takes advantage of the fact that when many neighboring pixels are known object pixels, the pixel in question is more likely to be a object pixel. The WAIST algorithm initializes the nearest neighbor parameters and statistical threshold parameters and adjusts them iteratively to converge to an optimal solution. Each iteration of the algorithm conservatively declares a pixel to be noise as the statistical threshold is raised. This algorithm has proven to segment objects of interest from noisy backgrounds and clutter. Results of the effort are presented.rn2. For moving object detection and tracking we identify the challenges that the user faces in this problem; in particular, blind geo-registration of the acquired spatially-warped imagery and their calibration. For moving object acquisition and tracking we present an adaptive signal/image processing approach that utilizes multiple frames of the acquired imagery for geo-registration and sensor calibration. Our method utilizes a cost function to associate detected moving objects in adjacent frames and these results are used to identify the motion track of each moving object in the imaging scene. Results are presented using a ground-based panning IR camera.
机译:当前,对开发用于智能,监视和侦察(ISR)和其他应用的电光和红外固定和移动物体采集和跟踪算法非常感兴趣。当对象参数(例如大小)众所周知时,许多现有的EO / IR对象获取和跟踪技术都可以很好地用于高质量图像。但是,当处理嘈杂和失真的图像时,许多技术都无法获取静止物体,也无法获取和跟踪运动物体。本文将讨论两个相互关联的问题:(1)静止物体的检测和分割以及(2)运动物体的获取和跟踪通过固定在移动平台上的红外传感器获取的图像序列.rn1。将描述称为“加权自适应迭代统计阈值(WAIST)”的静止物体检测和分割算法。 WAIST算法可拍摄任何强度的图像,并将物体像素与背景或混乱像素分开。两种常见的图像处理技术是最近邻聚类和统计阈值。 WAIST算法反复使用这两种技术,从而充分利用了这两种技术。统计阈值利用以下事实:基于图像中已知噪声像素的统计属性,对象像素将存在于阈值之上。最近邻技术利用以下事实:当许多相邻像素是已知目标像素时,所讨论的像素更可能是目标像素。 WAIST算法初始化最近的邻居参数和统计阈值参数,然后迭代调整它们以收敛到最优解。随着统计阈值的提高,算法的每次迭代都会保守地将像素声明为噪声。事实证明,该算法可从嘈杂的背景和杂波中分割出感兴趣的对象。介绍了努力的结果。对于移动物体检测和跟踪,我们确定用户在此问题中面临的挑战;特别是获取的空间扭曲图像的盲目地理配准及其校准。对于运动对象的获取和跟踪,我们提出了一种自适应信号/图像处理方法,该方法利用获取的图像的多个帧进行地理配准和传感器校准。我们的方法利用成本函数将相邻帧中检测到的运动物体关联起来,这些结果用于识别成像场景中每个运动物体的运动轨迹。使用地面平移红外摄像机显示结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号