首页> 外文会议>Image quality and systems performance X >An Algorithm for No-Reference Image Quality Assessment Based on Log-Derivative Statistics of Natural Scenes
【24h】

An Algorithm for No-Reference Image Quality Assessment Based on Log-Derivative Statistics of Natural Scenes

机译:基于自然场景对数导数统计的无参考图像质量评估算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new method for blindo-reference image quality assessment based on the logderivative statistics of natural scenes. The new method, called DErivative Statistics-based Image QUality Evaluator (DESIQUE), extracts image quality-related statistical features at two image scales in both the spatial and frequency domains, upon which a two-stage framework is employed to evaluate image quality. In the spatial domain, normalized luminance values of an image are modeled in two ways: point-wise based statistics for single pixel values and pairwise-based log-derivative statistics for the relationship of pixel pairs. In the frequency domain, log-Gabor filters are used to extract the high frequency component of an image, which is also modeled by the log-derivative statistics. All of these statistics are characterized by a generalized Gaussian distribution model, the parameters of which form the underlying features of the proposed method. Experiment results show that DESIQUE not only leads to considerable performance improvements, but also maintains high computational efficiency.
机译:本文提出了一种基于自然场景对数导数统计的盲/无参考图像质量评估的新方法。这种称为基于导数统计的图像质量评估器(DESIQUE)的新方法可在空间和频域的两个图像尺度上提取与图像质量相关的统计特征,然后采用两阶段框架评估图像质量。在空间域中,以两种方式对图像的标准化亮度值进行建模:单个像素值的基于点的统计信息以及像素对之间的关​​系的基于成对的对数导数统计信息。在频域中,log-Gabor滤波器用于提取图像的高频分量,该分量也由对数导数统计模型进行建模。所有这些统计数据都具有广义高斯分布模型的特征,该模型的参数构成了所提出方法的基本特征。实验结果表明,DESIQUE不仅可以显着提高性能,而且可以保持较高的计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号