首页> 外文会议>Image Processing pt.3 >Multiple Sclerosis lesion quantification in MR images by using vectorial scale-based relative fuzzy connectedness
【24h】

Multiple Sclerosis lesion quantification in MR images by using vectorial scale-based relative fuzzy connectedness

机译:基于矢量尺度的相对模糊连通度的MR图像多发性硬化病灶量化

获取原文

摘要

This paper presents a methodology for segmenting PD- and T2-weighted brain magnetic resonance (MR) images of multiple sclerosis (MS) patients into white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and MS lesions. For a given vectorial image (with PD- and T2-weighted components) to be segmented, we perform first intensity inhomogeneity correction and standardization prior to segmentation. Absolute fuzzy connectedness and certain morphological operations are utilized to generate the brain intracranial mask. The optimum thresholding method is applied to the product image (the image in which voxel values represent T2 valuexPD value) to automatically recognize potential MS lesion sites. Then, the recently developed technique -vectorial scale-based relative fuzzy connectedness - is utilized to segment all voxels within the brain intracranial mask into WM, GM, CSF, and MS lesion regions. The number of segmented lesions and the volume of each lesion are finally output as well as the volume of other tissue regions. The method has been tested on 10 clinical brain MRI data sets of MS patients. An accuracy of better than 96% has been achieved. The preliminary results indicate that its performance is better than that of the k-nearest neighbors (kNN) method.
机译:本文提出了一种将多发性硬化症(MS)患者的PD和T2加权脑磁共振(MR)图像分割为白质(WM),灰质(GM),脑脊液(CSF)和MS病变的方法。对于要分割的给定矢量图像(具有PD和T2加权分量),我们在分割之前先进行强度不均匀性校正和标准化。利用绝对的模糊连接和某些形态学运算来生成脑颅面罩。最佳阈值化方法应用于产品图像(体素值表示T2值xPD值的图像)以自动识别潜在的MS病变部位。然后,最近开发的技术-基于矢量尺度的相对模糊连接-被用于将颅内颅罩内的所有体素分割为WM,GM,CSF和MS病变区域。最终输出分割的病变的数量和每个病变的体积以及其他组织区域的体积。该方法已经在MS患者的10个临床脑MRI数据集上进行了测试。达到了优于96%的精度。初步结果表明,其性能优于k最近邻法(kNN)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号