首页> 外文会议>Image processing: algorithms and systems XII >Spatial - temporal features of thermal images for Carpal Tunnel Syndrome detection
【24h】

Spatial - temporal features of thermal images for Carpal Tunnel Syndrome detection

机译:腕管综合症热图像的时空特征

获取原文
获取原文并翻译 | 示例

摘要

Disorders associated with repeated trauma account for about 60% of all occupational illnesses, Carpal Tunnel Syndrome (CTS) being the most consulted today. Infrared Thermography (IT) has come to play an important role in the field of medicine. IT is non-invasive and detects diseases based on measuring temperature variations. IT represents a possible alternative to prevalent methods for diagnosis of CTS (i.e. nerve conduction studies and electromiography). This work presents a set of spatial-temporal features extracted from thermal images taken in healthy and ill patients. Support Vector Machine (SVM) classifiers test this feature space with Leave One Out (LOO) validation error. The results of the proposed approach show linear separability and lower validation errors when compared to features used in previous works that do not account for temperature spatial variability.
机译:与重复创伤相关的疾病约占所有职业病的60%,腕管综合症(CTS)是当今最受关注的疾病。红外热成像(IT)在医学领域起着重要作用。 IT是非侵入性的,可以通过测量温度变化来检测疾病。 IT代表了诊断CTS的流行方法(即神经传导研究和电子照相)的一种可能替代方法。这项工作提出了一组从健康和患病患者的热图像中提取的时空特征。支持向量机(SVM)分类器测试此功能空间,并留下(LOO)验证错误。与以前的工作中使用的不考虑温度空间变化性的特征相比,该方法的结果显示出线性可分离性和较低的验证误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号