首页> 外文会议>Image processing: algorithms and systems XII >Metric performance in similar blocks search and their use in collaborative 3D filtering of grayscale images
【24h】

Metric performance in similar blocks search and their use in collaborative 3D filtering of grayscale images

机译:相似块搜索中的指标性能及其在灰度图像的协同3D过滤中的使用

获取原文
获取原文并翻译 | 示例

摘要

Similar blocks (patches) search plays an important role in image processing. However, there are many factors making this search problematic and leading to errors. Noise in images that arises due to bad acquisition conditions or other sources is one of the main factors. Performance of similar patch search might make worse dramatically if noise level is high and/or if noise is not additive, white and Gaussian. In this paper, we consider the influence of similarity metrics (distances) on search performance. We demonstrate that robustness of similarity metrics is a crucial issue for performance of similarity search. Two models of additive noise are used: AWGN and spatially correlated noise with a wide set of noise standard deviations. To investigate metric performance, five test images are used for artificially inserted group of identical blocks. Metric effectiveness evaluation is carried out for nine different metric (including several unconventional ones) in three domains (one spatial and two spectral). It is shown that conventional Euclidian metric might be not the best choice which depends upon noise properties and data processing domain. After establishing the best metrics, they are exploited within non-local image denoising, namely the BM3D filter. This filter is applied to intensity images of the database TID2008. It is demonstrated that the use of more robust metrics instead of classical ones (Euclidean) in BM3D filter allows improving similar block search and, as a result, provides better results of image denoising for the case of spatially correlated noise.
机译:相似的块(补丁)搜索在图像处理中起着重要的作用。但是,有许多因素使此搜索成为问题并导致错误。由于不良的采集条件或其他来源而产生的图像噪声是主要因素之一。如果噪声水平高和/或如果噪声不是加性噪声,白噪声和高斯噪声,则类似补丁搜索的性能可能会急剧恶化。在本文中,我们考虑了相似性指标(距离)对搜索性能的影响。我们证明了相似性指标的鲁棒性是相似性搜索性能的关键问题。使用了两种附加噪声模型:AWGN和具有广泛噪声标准偏差的空间相关噪声。为了研究度量标准性能,将五个测试图像用于人工插入的相同块组。对三个域(一个空间和两个光谱)中的九种不同度量(包括几个非常规度量)进行了度量有效性评估。结果表明,传统的欧几里得度量可能不是取决于噪声属性和数据处理域的最佳选择。建立最佳度量后,它们会在非本地图像降噪(即BM3D滤波器)中加以利用。该过滤器应用于数据库TID2008的强度图像。结果表明,在BM3D滤波器中使用更鲁棒的指标代替经典指标(欧几里得),可以改善类似的块搜索,结果,在空间相关噪声的情况下,可以提供更好的图像去噪效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号