首页> 外文会议>IFAC (International Federation of Automatic Control) World Congress >DIAGNOSIS OF CONTINUOUS DYNAMIC SYSTEMS: INTEGRATING CONSISTENCY BASED DIAGNOSIS WITH MACHINE-LEARNING TECHNIQUES
【24h】

DIAGNOSIS OF CONTINUOUS DYNAMIC SYSTEMS: INTEGRATING CONSISTENCY BASED DIAGNOSIS WITH MACHINE-LEARNING TECHNIQUES

机译:诊断连续动力系统:将基于一致性的诊断与机器学习技术集成在一起

获取原文

摘要

This paper describes an integrated approach to diagnosis of complex dynamic systems, combining model based diagnosis with machine learning techniques, proposing a simple framework to make them cooperate, hence improving the diagnosis capabilities of each individual method. First step in the diagnosis process resorts to consistency-based diagnosis, via possible conflicts, which allows fault detection and localization without prior knowledge of the device fault modes. In the second step, a classification system, obtained via machine learning techniques, is used to propose a ranked sequence of fault modes, coherent with the previous localization step. This cycle iterates in time, generating more focused and precise diagnosis as new data are available. A laboratory plant has been built to test this proposal. Simulation results are shown for a total number of 14 different faults.
机译:本文介绍了一种用于诊断复杂动态系统的综合方法,将基于模型的诊断与机器学习技术相结合,提出了一个简单的框架使其能够协同工作,从而提高了每种方法的诊断能力。诊断过程的第一步是通过可能的冲突求助于基于一致性的诊断,从而无需事先了解设备故障模式就可以进行故障检测和定位。第二步,使用通过机器学习技术获得的分类系统,提出与先前的定位步骤相一致的故障模式的排序序列。随着新数据的获取,该周期会不断重复,从而产生更加集中和精确的诊断。已经建立了实验室来测试该建议。显示了总共14种不同故障的仿真结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号