首页> 外文会议>IET/SynbiCITE Engineering Biology Conference >Droplet-based microfluidics: Towards ultra-high-throughput chemistry and biology
【24h】

Droplet-based microfluidics: Towards ultra-high-throughput chemistry and biology

机译:基于液滴的微流体:迈向超高通量化学和生物学

获取原文
获取原文并翻译 | 示例

摘要

The past 25 years have seen considerable progress in the development of microfabricated systems for use in the chemical and biological sciences. Interest in microfluidic technology has driven by concomitant advances in the areas of genomics, proteomics, drug discovery, high-throughput screening and diagnostics, with a clearly defined need to perform rapid measurements on small sample volumes. At a basic level, microfluidic activities have been stimulated by the fact that physical processes can be more easily controlled when instrumental dimensions are reduced to the micron scale. The relevance of such technology is significant and characterized by a range of features that accompany system miniaturization. Such features include the ability to process small volumes of fluid, enhanced analytical performance, reduced instrumental footprints, low unit costs, facile integration of functional components within monolithic substrates and the capacity to exploit atypical fluid behaviour to control chemical and biological entities in both time and space. My lecture will discuss why we have been motivated to use microfluidic systems for chemical and biological experimentation and will focus particularly on recent studies that exploit the spontaneous formation of droplets in microfluidic systems to perform a variety of analytical processes. Droplet-based microfluidic systems allow the generation and manipulation of discrete droplets contained within an immiscible continuous phase. They leverage immiscibility to create discrete volumes that reside and move within a continuous flow. Significantly, such segmented-flows allow for the production of monodisperse droplets at rates in excess of tens of KHz and independent control of each droplet in terms of size, position and chemical makeup. Moreover, the use of droplets in complex chemical and biological processing relies on the ability to perform a range of integrated, unit operations in high-throughput. Such operations include droplet generation, droplet merging/fusion, droplet sorting, droplet splitting, droplet dilution, droplet storage and droplet sampling. I will provide examples of how droplet-based microfluidic systems can be used to perform a range of experiments including nanomaterial synthesis, cell-based assays and DNA amplification. In addition, I will describe recent studies focused on the development of novel imaging flow cytometry platform that leverages the integration of inertial microfluidics with stroboscopic illumination to allow for high-resolution imaging of cells at throughputs approaching 10n5ncells/second.
机译:在过去的25年中,用于化学和生物科学的微型系统的开发取得了长足的进步。在基因组学,蛋白质组学,药物发现,高通量筛选和诊断等领域的同时进步,带动了对微流体技术的兴趣,明确定义了对小样本量进行快速测量的需求。从根本上讲,当仪器尺寸减小至微米级时,可以更轻松地控制物理过程,从而刺激了微流体的活动。这种技术的意义重大,其特点是伴随着系统小型化的一系列功能。这些功能包括处理少量流体的能力,增强的分析性能,减少的仪器占地面积,较低的单位成本,功能部件在整块基质中的便捷集成以及利用非典型流体行为来控制化学和生物实体的能力。空间。我的演讲将讨论为什么我们有动机使用微流体系统进行化学和生物学实验,并将特别关注最近的研究,这些研究利用微流体系统中液滴的自发形成来执行各种分析过程。基于液滴的微流体系统允许生成和操作不混溶的连续相中包含的离散液滴。它们利用不混溶性来创建离散的卷,这些卷在连续的流中驻留和移动。显着地,这种分段流允许以超过数十KHz的速率产生单分散液滴,并且就大小,位置和化学组成而言独立控制每个液滴。此外,在复杂的化学和生物处理中使用液滴取决于以高通量执行一系列集成的单元操作的能力。这些操作包括液滴产生,液滴合并/融合,液滴分类,液滴分裂,液滴稀释,液滴存储和液滴采样。我将提供基于液滴的微流体系统如何用于进行一系列实验的示例,这些实验包括纳米材料合成,基于细胞的测定法和DNA扩增。此外,我将描述最近的研究重点,这些研究的重点是新型成像流式细胞仪平台的开发,该平台利用惯性微流控技术与频闪照明相结合的方式,以接近10n的吞吐量对细胞进行高分辨率成像。 //www.w3.org/1998/Math/MathML“ xmlns:xlink =” http://www.w3.org/1999/xlink“> 5 ncells / second。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号