首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >Part-Based Player Identification Using Deep Convolutional Representation and Multi-scale Pooling
【24h】

Part-Based Player Identification Using Deep Convolutional Representation and Multi-scale Pooling

机译:基于深度卷积表示和多尺度池化的基于零件的球员识别

获取原文

摘要

This paper addresses the problem of automatic player identification in broadcast sports videos filmed with a single side-view medium distance camera. Player identification in this setting is a challenging task because visual cues such as faces and jersey numbers are not clearly visible. Thus, this task requires sophisticated approaches to capture distinctive features from players to distinguish them. To this end, we use Convolutional Neural Networks (CNN) features extracted at multiple scales and encode them with an advanced pooling, called Fisher vector. We leverage it for exploring representations that have sufficient discriminatory power and ability to magnify subtle differences. We also analyze the distinguishing parts of the players and present a part based pooling approach to use these distinctive feature points. The resulting player representation is able to identify players even in difficult scenes. It achieves state-of-the-art results up to 96% on NBA basketball clips.
机译:本文解决了用单侧视中距离摄像机拍摄的广播体育视频中自动识别运动员的问题。在这种情况下,识别球员是一项具有挑战性的任务,因为无法清晰地看到诸如面孔和球衣号码之类的视觉提示。因此,这项任务需要复杂的方法来捕获玩家的独特特征,以区别它们。为此,我们使用在多个尺度上提取的卷积神经网络(CNN)特征,并使用称为Fisher向量的高级合并对它们进行编码。我们利用它来探索具有足够区分力和放大细微差异的能力的表示形式。我们还分析了玩家的不同部分,并提出了基于部分的合并方法来使用这些独特的特征点。最终的玩家表示即使在困难的场景中也能够识别玩家。在NBA篮球短片上,它可以实现高达96%的最新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号