首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Regularizing Deep Networks by Modeling and Predicting Label Structure
【24h】

Regularizing Deep Networks by Modeling and Predicting Label Structure

机译:通过建模和预测标签结构来规范化深层网络

获取原文

摘要

We construct custom regularization functions for use in supervised training of deep neural networks. Our technique is applicable when the ground-truth labels themselves exhibit internal structure; we derive a regularizer by learning an autoencoder over the set of annotations. Training thereby becomes a two-phase procedure. The first phase models labels with an autoencoder. The second phase trains the actual network of interest by attaching an auxiliary branch that must predict output via a hidden layer of the autoencoder. After training, we discard this auxiliary branch. We experiment in the context of semantic segmentation, demonstrating this regularization strategy leads to consistent accuracy boosts over baselines, both when training from scratch, or in combination with ImageNet pretraining. Gains are also consistent over different choices of convolutional network architecture. As our regularizer is discarded after training, our method has zero cost at test time; the performance improvements are essentially free. We are simply able to learn better network weights by building an abstract model of the label space, and then training the network to understand this abstraction alongside the original task.
机译:我们构造用于深度神经网络监督训练的自定义正则化函数。当地面标签本身显示内部结构时,我们的技术适用。我们通过学习注释集上的自动编码器来得出正则化器。培训因此成为两个阶段的过程。第一阶段使用自动编码器对标签进行建模。第二阶段通过附加必须通过自动编码器的隐藏层预测输出的辅助分支来训练实际的目标网络。训练后,我们丢弃此辅助分支。我们在语义分割的背景下进行了实验,证明了这种正则化策略可从零开始进行训练或与ImageNet预训练结合使用,从而使基准线的准确性不断提高。在卷积网络体系结构的不同选择上,收益也是一致的。由于我们的正则化器在训练后被丢弃,因此我们的方法在测试时成本为零;性能改进基本上是免费的。通过建立标签空间的抽象模型,然后训练网络以理解此抽象以及原始任务,我们可以简单地学习更好的网络权重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号