首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >3D Semantic Segmentation with Submanifold Sparse Convolutional Networks
【24h】

3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

机译:子流形稀疏卷积网络的3D语义分割

获取原文

摘要

Convolutional networks are the de-facto standard for analyzing spatio-temporal data such as images, videos, and 3D shapes. Whilst some of this data is naturally dense (e.g., photos), many other data sources are inherently sparse. Examples include 3D point clouds that were obtained using a LiDAR scanner or RGB-D camera. Standard 'dense' implementations of convolutional networks are very inefficient when applied on such sparse data. We introduce new sparse convolutional operations that are designed to process spatially-sparse data more efficiently, and use them to develop spatially-sparse convolutional networks. We demonstrate the strong performance of the resulting models, called submanifold sparse convolutional networks (SS-CNs), on two tasks involving semantic segmentation of 3D point clouds. In particular, our models outperform all prior state-of-the-art on the test set of a recent semantic segmentation competition.
机译:卷积网络是用于分析时空数据(例如图像,视频和3D形状)的实际标准。尽管其中一些数据自然密集(例如照片),但许多其他数据源本来就稀疏。示例包括使用LiDAR扫描仪或RGB-D相机获得的3D点云。当卷积网络的标准“密集”实现应用于此类稀疏数据时,效率非常低。我们介绍了新的稀疏卷积运算,这些运算旨在更有效地处理空间稀疏数据,并使用它们来开发空间稀疏卷积网络。我们在涉及3D点云语义分割的两项任务上证明了称为子流形稀疏卷积网络(SS-CN)的结果模型的强大性能。特别是,我们的模型在最近的语义细分竞赛的测试集上胜过所有现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号