首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >VGAN-Based Image Representation Learning for Privacy-Preserving Facial Expression Recognition
【24h】

VGAN-Based Image Representation Learning for Privacy-Preserving Facial Expression Recognition

机译:基于VEGAN的图像表示学习可保护隐私的面部表情

获取原文

摘要

Reliable facial expression recognition plays a critical role in human-machine interactions. However, most of the facial expression analysis methodologies proposed to date pay little or no attention to the protection of a user's privacy. In this paper, we propose a Privacy-Preserving Representation-Learning Variational Generative Adversarial Network (PPRL-VGAN) to learn an image representation that is explicitly disentangled from the identity information. At the same time, this representation is discriminative from the standpoint of facial expression recognition and generative as it allows expression-equivalent face image synthesis. We evaluate the proposed model on two public datasets under various threat scenarios. Quantitative and qualitative results demonstrate that our approach strikes a balance between the preservation of privacy and data utility. We further demonstrate that our model can be effectively applied to other tasks such as expression morphing and image completion.
机译:可靠的面部表情识别在人机交互中起着至关重要的作用。然而,迄今为止提出的大多数面部表情分析方法很少或根本没有注意保护用户的隐私。在本文中,我们提出了一种隐私保护表示学习可变生成对抗网络(PPRL-VGAN),以学习一种与身份信息明确分离的图像表示。同时,从面部表情识别的角度来看,这种表示是有区别的,并且由于它允许表情等效的面部图像合成,因此这种表示是可生成的。我们在各种威胁情景下的两个公共数据集上评估了该模型。定量和定性的结果表明,我们的方法在隐私保护和数据实用程序之间取得了平衡。我们进一步证明了我们的模型可以有效地应用于其他任务,例如表情变形和图像完成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号