首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Attentive Generative Adversarial Network for Raindrop Removal from A Single Image
【24h】

Attentive Generative Adversarial Network for Raindrop Removal from A Single Image

机译:细心的生成对抗网络,用于从单个图像中去除雨滴

获取原文

摘要

Raindrops adhered to a glass window or camera lens can severely hamper the visibility of a background scene and degrade an image considerably. In this paper, we address the problem by visually removing raindrops, and thus transforming a raindrop degraded image into a clean one. The problem is intractable, since first the regions occluded by raindrops are not given. Second, the information about the background scene of the occluded regions is completely lost for most part. To resolve the problem, we apply an attentive generative network using adversarial training. Our main idea is to inject visual attention into both the generative and discriminative networks. During the training, our visual attention learns about raindrop regions and their surroundings. Hence, by injecting this information, the generative network will pay more attention to the raindrop regions and the surrounding structures, and the discriminative network will be able to assess the local consistency of the restored regions. This injection of visual attention to both generative and discriminative networks is the main contribution of this paper. Our experiments show the effectiveness of our approach, which outperforms the state of the art methods quantitatively and qualitatively.
机译:附着在玻璃窗或相机镜头上的雨滴会严重妨碍背景场景的可视性,并严重降低图像质量。在本文中,我们通过视觉上去除雨滴并将雨滴退化的图像转换为干净的图像来解决该问题。这个问题是棘手的,因为首先没有给出被雨滴遮挡的区域。第二,关于被遮挡区域的背景场景的信息在很大程度上被完全丢失。为了解决该问题,我们使用对抗训练来应用细心的生成网络。我们的主要思想是将视觉注意力注入到生成网络和判别网络中。在培训期间,我们的视觉注意力会了解雨滴区域及其周围的环境。因此,通过注入此信息,生成网络将更加关注雨滴区域和周围的结构,而判别网络将能够评估恢复区域的局部一致性。对生成网络和判别网络的视觉注视是本文的主要贡献。我们的实验证明了我们方法的有效性,该方法在数量和质量上均优于最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号