首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >Fully End-to-End Learning Based Conditional Boundary Equilibrium GAN with Receptive Field Sizes Enlarged for Single Ultra-High Resolution Image Dehazing
【24h】

Fully End-to-End Learning Based Conditional Boundary Equilibrium GAN with Receptive Field Sizes Enlarged for Single Ultra-High Resolution Image Dehazing

机译:基于完全端到端学习的条件边界平衡GAN,具有扩大的接收场大小,用于单个超高分辨率图像去雾

获取原文

摘要

A receptive field is defined as the region in an input image space that an output image pixel is looking at. Thus, the receptive field size influences the learning of deep convolution neural networks. Especially, in single image dehazing problems, larger receptive fields often show more effective dehazying by considering the brightness and color of the entire input hazy image without additional information (e.g. scene transmission map, depth map, and atmospheric light). The conventional generative adversarial network (GAN) with small-sized receptive fields cannot be effective for hazy images of ultra-high resolution. Thus, we proposed a fully end-to-end learning based conditional boundary equilibrium generative adversarial network (BEGAN) with the receptive field sizes enlarged for single image dehazing. In our conditional BEGAN, its discriminator is trained ultra-high resolution conditioned on downscale input hazy images, so that the haze can effectively be removed with the original structures of images stably preserved. From this, we can obtain the high PSNR performance (Track 1 - Indoor: top 4th-ranked) and fast computation speeds. Also, we combine an L1 loss, a perceptual loss and a GAN loss as the generator's loss of the proposed conditional BEGAN, which allows to obtain stable dehazing results for various hazy images.
机译:接收场被定义为输入图像空间中输出图像像素正在注视的区域。因此,感受野的大小会影响深度卷积神经网络的学习。特别地,在单图像去雾问题中,通过考虑整个输入的模糊图像的亮度和颜色而没有附加信息(例如,场景透射图,深度图和大气光),较大的接收场通常显示出更有效的去雾。具有小接收场的常规生成对抗网络(GAN)不能有效用于超高分辨率的模糊图像。因此,我们提出了一种基于端到端完全学习的条件边界平衡生成对抗网络(BEGAN),其中接收场大小针对单个图像进行了消雾处理。在我们的条件BEGAN中,其判别器是根据缩小的输入模糊图像训练的超高分辨率,因此可以有效地去除雾度,同时稳定保留图像的原始结构。由此,我们可以获得较高的PSNR性能(轨道1-室内:排名第四)和快速的计算速度。此外,我们将L1损失,感知损失和GAN损失结合起来作为生成器对拟议的有条件BEGAN的损失,从而可以为各种模糊图像获得稳定的除雾结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号