首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling
【24h】

Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling

机译:Pix3D:单图像3D形状建模的数据集和方法

获取原文

摘要

We study 3D shape modeling from a single image and make contributions to it in three aspects. First, we present Pix3D, a large-scale benchmark of diverse image-shape pairs with pixel-level 2D-3D alignment. Pix3D has wide applications in shape-related tasks including reconstruction, retrieval, viewpoint estimation, etc. Building such a large-scale dataset, however, is highly challenging; existing datasets either contain only synthetic data, or lack precise alignment between 2D images and 3D shapes, or only have a small number of images. Second, we calibrate the evaluation criteria for 3D shape reconstruction through behavioral studies, and use them to objectively and systematically benchmark cutting-edge reconstruction algorithms on Pix3D. Third, we design a novel model that simultaneously performs 3D reconstruction and pose estimation; our multi-task learning approach achieves state-of-the-art performance on both tasks.
机译:我们从单个图像研究3D形状建模,并从三个方面对此做出贡献。首先,我们介绍Pix3D,这是具有像素级2D-3D对齐方式的各种图像形状对的大规模基准测试。 Pix3D在与形状有关的任务中具有广泛的应用,包括重建,检索,视点估计等。现有数据集要么仅包含合成数据,要么在2D图像和3D形状之间缺乏精确对齐,要么仅包含少量图像。其次,我们通过行为研究来校准3D形状重建的评估标准,并将其用于客观,系统地对Pix3D上的尖端重建算法进行基准测试。第三,我们设计了一个新颖的模型,该模型可以同时执行3D重建和姿势估计;我们的多任务学习方法在这两个任务上都达到了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号