首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops >Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss
【24h】

Land Cover Classification from Satellite Imagery with U-Net and Lovász-Softmax Loss

机译:具有U-Net和Lovász-Softmax损失的卫星图像的土地覆盖分类

获取原文

摘要

The land cover classification task of the DeepGlobe Challenge presents significant obstacles even to state of the art segmentation models due to a small amount of data, incomplete and sometimes incorrect labeling, and highly imbalanced classes. In this work, we show an approach based on the U-Net architecture with the Lov́asz-Softmax loss that successfully alleviates these problems; we compare several different convolutional architectures for U-Net encoders.
机译:DeepGlobe挑战赛的土地覆盖分类任务由于数据量少,标签不完整(有时甚至不正确)以及类别高度失衡,甚至对现有的细分模型也构成了重大障碍。在这项工作中,我们展示了一种基于U-Net架构且具有Lov́asz-Softmax损失的方法,该方法成功地缓解了这些问题;我们比较了U-Net编码器的几种不同的卷积架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号