首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation
【24h】

Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation

机译:使用动态上采样滤波器的深度视频超分辨率网络,无需显式运动补偿

获取原文

摘要

Video super-resolution (VSR) has become even more important recently to provide high resolution (HR) contents for ultra high definition displays. While many deep learning based VSR methods have been proposed, most of them rely heavily on the accuracy of motion estimation and compensation. We introduce a fundamentally different framework for VSR in this paper. We propose a novel end-to-end deep neural network that generates dynamic upsampling filters and a residual image, which are computed depending on the local spatio-temporal neighborhood of each pixel to avoid explicit motion compensation. With our approach, an HR image is reconstructed directly from the input image using the dynamic upsampling filters, and the fine details are added through the computed residual. Our network with the help of a new data augmentation technique can generate much sharper HR videos with temporal consistency, compared with the previous methods. We also provide analysis of our network through extensive experiments to show how the network deals with motions implicitly.
机译:为了为超高清显示器提供高分辨率(HR)内容,视频超分辨率(VSR)最近变得越来越重要。虽然已经提出了许多基于深度学习的VSR方法,但大多数方法都严重依赖于运动估计和补偿的准确性。我们在本文中介绍了一个完全不同的VSR框架。我们提出了一种新颖的端到端深度神经网络,该网络会生成动态上采样滤波器和残差图像,这些滤镜和残差图像是根据每个像素的局部时空邻域进行计算以避免显式运动补偿的。使用我们的方法,使用动态上采样滤波器从输入图像直接重建HR图像,并通过计算的残差添加精细细节。与以前的方法相比,借助新的数据增强技术,我们的网络可以生成具有时间一致性的清晰得多的HR视频。我们还通过广泛的实验对网络进行分析,以显示网络如何隐式处理运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号