首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Facial Expression Recognition by De-expression Residue Learning
【24h】

Facial Expression Recognition by De-expression Residue Learning

机译:去表达残基学习的面部表情识别

获取原文

摘要

A facial expression is a combination of an expressive component and a neutral component of a person. In this paper, we propose to recognize facial expressions by extracting information of the expressive component through a de-expression learning procedure, called De-expression Residue Learning (DeRL). First, a generative model is trained by cGAN. This model generates the corresponding neutral face image for any input face image. We call this procedure de-expression because the expressive information is filtered out by the generative model; however, the expressive information is still recorded in the intermediate layers. Given the neutral face image, unlike previous works using pixel-level or feature-level difference for facial expression classification, our new method learns the deposition (or residue) that remains in the intermediate layers of the generative model. Such a residue is essential as it contains the expressive component deposited in the generative model from any input facial expression images. Seven public facial expression databases are employed in our experiments. With two databases (BU-4DFE and BP4D-spontaneous) for pre-training, the DeRL method has been evaluated on five databases, CK+, Oulu-CASIA, MMI, BU-3DFE, and BP4D+. The experimental results demonstrate the superior performance of the proposed method.
机译:面部表情是人的表达成分和中性成分的组合。在本文中,我们建议通过称为“去表达残基学习”(DeRL)的去表达学习程序来提取表情成分的信息,从而识别面部表情。首先,生成模型由cGAN训练。该模型为任何输入的面部图像生成相应的中性面部图像。我们称此过程为非表达,因为表达信息被生成模型过滤掉了。但是,表达信息仍记录在中间层中。给定中性的面部图像,与以前的使用像素级或特征级差异进行面部表情分类的工作不同,我们的新方法可以学习保留在生成模型中间层中的沉积物(或残留物)。这样的残基是必不可少的,因为它包含从任何输入的面部表情图像中沉积在生成模型中的表达成分。我们的实验中使用了七个公共面部表情数据库。通过两个用于预训练的数据库(BU-4DFE和BP4D自发),已经在CK +,Oulu-CASIA,MMI,BU-3DFE和BP4D +这五个数据库上评估了DeRL方法。实验结果证明了该方法的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号