首页> 外文会议>IEEE/ACM International Conference on Big Data Computing Applications and Technologies >Detecting System Anomalies in Multivariate Time Series with Information Transfer and Random Walk
【24h】

Detecting System Anomalies in Multivariate Time Series with Information Transfer and Random Walk

机译:利用信息传递和随机游走检测多元时间序列中的系统异常

获取原文

摘要

Detecting major system anomalies with observed multivariate time series requires not only the characteristics of each time series but also the status of the entire time series dynamics. Therefore, we propose a method that can detect substantial anomalies by generating a transfer network and an influence network from a multivariate time series. To form a transfer network, each vertex represents a single time series. Each edge indicates the strength of the information flow between each pair of time series using transfer entropy. With the transfer network, we exploit the random walk approach to calculate the affinity score between two vertices and create an influence network that reflects both the direct and indirect influences. In our experiment, we show the efficacy of the proposed method using simple synthetic time series networks and the real data set such as world stock indices and key performance indicators of the SAP HANA in-memory database system.
机译:使用观察到的多元时间序列来检测主要系统异常不仅需要每个时间序列的特征,还需要整个时间序列动力学的状态。因此,我们提出了一种方法,该方法可以通过根据多元时间序列生成转移网络和影响网络来检测实质异常。为了形成传输网络,每个顶点代表一个时间序列。每个边缘使用转移熵指示每对时间序列之间的信息流强度。通过转移网络,我们利用随机游走方法来计算两个顶点之间的亲和力得分,并创建一个反映直接和间接影响的影响网络。在我们的实验中,我们使用简单的合成时间序列网络和SAP HANA内存数据库系统的世界股票指数和关键绩效指标等真实数据集,展示了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号