【24h】

Social Network Mining for Recommendation of Friends Based on Music Interests

机译:基于音乐兴趣的社交网络挖掘以推荐朋友

获取原文

摘要

With the rapid development of technology and software, social media have become a necessity in our daily lives as it is a way for people to keep in touch with friends and share about current events. Some of the most popular social media and social networking sites that people use include Facebook, Instagram, Snapchat, and Twitter. Finding compatible persons to be friends on social media can be a challenge as many of the people recommended to the user by social media are people who are already friends with them or have been followed. However, when users are looking for friends, the real concern is whether they have common interests or hobbies with each other and whether they often interact with one another. In this paper, we propose friend recommendation algorithms revolving around music interests and interactions in social media.
机译:随着技术和软件的飞速发展,社交媒体已成为人们日常生活中的必需品,因为社交媒体是人们与朋友保持联系并分享时事的一种方式。人们使用的一些最受欢迎的社交媒体和社交网站包括Facebook,Instagram,Snapchat和Twitter。在社交媒体上找到兼容的人成为朋友可能是一个挑战,因为社交媒体向用户推荐的许多人都是已经与他们成为朋友或被关注的人。但是,当用户寻找朋友时,真正关心的是他们是否有共同的兴趣爱好或爱好,以及他们是否经常相互交流。在本文中,我们提出了围绕音乐兴趣和社交媒体互动的朋友推荐算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号