首页> 外文会议>IEEE Workshop on complexity in engineering >A Data-Driven Method to Dissect the Dynamics of the Causal Influence in Complex Dynamical Systems
【24h】

A Data-Driven Method to Dissect the Dynamics of the Causal Influence in Complex Dynamical Systems

机译:剖析复杂动力系统中因果影响动力学的数据驱动方法

获取原文

摘要

In several natural and physical systems, reconstructing the graph underlying the interactions is fundamental to understand the interplay between units and the mechanisms at the base of their collective behavior. This is the case of coupled networked dynamical systems where due to several environmental and physical factors such as obstacles, sensors limited range, or components failure, the interaction network might vary in time and space. Currently, such dynamics cannot be fully captured by most existing tools nor there exists any available tools to capture these changes in real time. Here, we present a novel method to infer changes in the causal influence of units of a coupled dynamical system. The approach builds on network and information theories to propose a metric evaluating the influence as time evolves of any node on others. The method is validated on self-propelled particles where particles influence status is subject to vary over time. Our proposed method is expected to enrich the toolbox for reconstructing directed interactions in quasi-real time with few data.
机译:在一些自然和物理系统中,重新构造交互作用下的图对于了解单元和基于其集体行为的机制之间的相互作用至关重要。耦合网络动力系统就是这种情况,其中由于多种环境和物理因素(例如障碍物,传感器限制范围或组件故障),交互网络可能会在时间和空间上发生变化。当前,大多数现有工具无法完全捕获这种动态,也没有任何可用的工具可以实时捕获这些变化。在这里,我们提出了一种新颖的方法来推断耦合动力系统各单元的因果影响的变化。该方法建立在网络和信息理论的基础上,提出了一种评估任何节点随时间变化对其他节点的影响的度量。该方法已在自推进式颗粒上得到验证,其中颗粒影响状态会随时间变化。预期我们提出的方法将丰富工具箱,用于以很少的数据准实时地重建定向交互。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号