首页> 外文会议>IEEE SENSORS Conference >Geolocation of Mobile Objects from Multiple UAV Optical Sensor Platforms
【24h】

Geolocation of Mobile Objects from Multiple UAV Optical Sensor Platforms

机译:来自多个无人机光学传感器平台的移动物体的地理位置

获取原文

摘要

With the rise of inexpensive, commercially available UAVs (drones) it has become possible to collect data from multiple UAVs equipped with optical sensors. This possibility has enabled tracking and data fusion with multiple airborne platforms. The addition of multiple airborne sensors allows for more robust tracking that is less susceptible to clutter and track proliferation. This paper demonstrates the air-to-ground tracking capabilities of two airborne sensors following a moving ground target using the centralized fusion Extended Kalman Filter and Probabilistic Data Association Filter implemented in the Python library pystemlib. The result of adding multiple airborne sensors is a reduced state estimation error and more robust target state predictions evidenced by a reduced root-mean-square error and smaller area of probabilities. A validation of this approach is demonstrated with real data.
机译:随着廉价的,可商购的无人机(无人机)的兴起,已经可以从配备有光学传感器的多个无人机收集数据。这种可能性使得能够与多个机载平台进行跟踪和数据融合。增加了多个机载传感器,可以实现更鲁棒的跟踪,而不会造成混乱和跟踪扩散。本文演示了使用Python库pystemlib中实现的集中式融合扩展卡尔曼滤波器和概率数据关联滤波器,对移动目标后的两个机载传感器的空对地跟踪能力。增加多个机载传感器的结果是减少了状态估计误差,并通过减少了均方根误差和较小的概率范围证明了更可靠的目标状态预测。真实数据证明了这种方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号