首页> 外文会议>IEEE-RIVF International Conference on Computing and Communication Technologies >Constructing Metrics for Evaluating Multi-Relational Association Rules in the Semantic Web from Metrics for Scoring Association Rules
【24h】

Constructing Metrics for Evaluating Multi-Relational Association Rules in the Semantic Web from Metrics for Scoring Association Rules

机译:从计分关联规则的度量中构造用于评估语义网中多关系关联规则的度量

获取原文

摘要

We propose a method to construct asymmetric metrics for evaluating the quality of multi-relational association rules coded in the form of SWRL rules. These metrics are derived from metrics for scoring association rules. We use each constructed metric as a fitness function for evolutionary inductive programming employed to discover hidden knowledge patterns (represented in SWRL) from assertional data of ontological knowledge bases. This new knowledge can be integrated easily within the ontology to enrich it. In addition, we also carry out a search for the best metric to score candidate multi-relational association rules in the evolutionary approach by experiment. We performed experiments on three publicly available ontologies validating the performances of our approach and comparing them with the main state-of-the-art systems.
机译:我们提出一种构造非对称度量的方法,用于评估以SWRL规则形式编码的多关系关联规则的质量。这些度量是从对关联规则评分的度量中得出的。我们使用每个构造的度量作为适应性函数,用于进化归纳编程,以从本体论知识库的断言数据中发现隐藏的知识模式(以SWRL表示)。这些新知识可以轻松集成到本体中以丰富知识。此外,我们还通过实验探索了一种最佳度量,以在进化方法中为候选的多关系关联规则评分。我们在三种公开的本体上进行了实验,以验证我们的方法的性能并将其与主要的最新系统进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号