首页> 外文会议>IEEE PES GTD Grand International Conference and Exposition Asia >Preliminary Analysis of Short-term Solar Irradiance Forecasting by using Total-sky Imager and Convolutional Neural Network
【24h】

Preliminary Analysis of Short-term Solar Irradiance Forecasting by using Total-sky Imager and Convolutional Neural Network

机译:利用全天成像仪和卷积神经网络进行的短期太阳辐射预测的初步分析

获取原文

摘要

The installation of photovoltaic system (PV) is increasing rapidly across the world. However, the fluctuation of PV output causes serious challenges in the power grid operation. Among the fluctuation, a quick part of fluctuation is mainly caused by the change of cloud coverage. A total-sky imager (TSI), measuring device to take sky and cloud, could be useful for short-term solar irradiance forecasting. In this paper, a convolutional neural network (CNN) is applied to forecasting model (called CNN model) to forecast 5-20 min ahead of global horizontal irradiance (GHI) using total-sky images and lagged GHI. To verify the effectiveness of CNN, three forecasting models are compared. They are the persistence model, the CNN model using only total-sky images, and the CNN model using both total-sky images and lagged GHI. From the computation, the proposed CNN model using both total-sky images and lagged GHI performs root-mean-square error (RMSE) of 49-177W/m
机译:光伏系统(PV)的安装在世界范围内迅速增长。但是,光伏输出的波动给电网运行带来了严峻的挑战。在波动中,波动的快速部分主要是由云覆盖率的变化引起的。全天候成像仪(TSI),用于获取天和云的测量设备,对于短期太阳辐照度预测可能很有用。本文将卷积神经网络(CNN)应用于预测模型(称为CNN模型),以使用总天空图像和滞后GHI预测全球水平辐照度(GHI)之前5-20分钟。为了验证CNN的有效性,比较了三种预测模型。它们是持久性模型,仅使用总天空图像的CNN模型,以及同时使用总天空图像和滞后GHI的CNN模型。通过计算,使用总天空图像和滞后GHI的拟议CNN模型执行的均方根误差(RMSE)为49-177W / m

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号