首页> 外文会议>2019 IEEE International Conference on Computational Electromagnetics >A New Method for Road Element Extraction Based on Fully Convolutional Network
【24h】

A New Method for Road Element Extraction Based on Fully Convolutional Network

机译:基于全卷积网络的道路要素提取新方法

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the problem of extracting road elements from high-resolution satellite photos, a new method based on deep learning techniques is proposed and implemented in this paper. Unlike the traditional road extraction algorithms, the new method regards road elements as semantic objects and classifies them using a well trained fully convolution network, which is constructed by adding deconvolution layers to a VGG16 network model. The experimental result indicated that the trained network model is not only able to extract roads from satellite photos, but also segment major road elements at a high accuracy rate. Especially, the method has shown better robustness in dealing with the road edges which are partially blocked by vehicles or trees than that of traditional road extraction algorithms.
机译:针对高分辨率卫星照片提取道路要素的问题,提出并实现了一种基于深度学习技术的新方法。与传统的道路提取算法不同,该新方法将道路元素视为语义对象,并使用训练有素的完全卷积网络对它们进行分类,该网络是通过在VGG16网络模型中添加反卷积层来构造的。实验结果表明,经过训练的网络模型不仅能够从卫星照片中提取道路,而且能够以较高的准确率分割主要道路元素。特别地,与传统的道路提取算法相比,该方法在处理被车辆或树木部分遮挡的道路边缘时表现出更好的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号