首页> 外文会议>IEEE International Workshops on Foundations and Applications of Self* Systems >OMBM-ML: An Efficient Memory Bandwidth Management for Ensuring QoS and Improving Server Utilization
【24h】

OMBM-ML: An Efficient Memory Bandwidth Management for Ensuring QoS and Improving Server Utilization

机译:OMBM-ML:一种有效的内存带宽管理,可确保QoS和提高服务器利用率

获取原文

摘要

As cloud data centers are dramatically growing, various applications are moved to cloud data centers owing to cost benefits for maintenance and hardware resources. However, latency-critical workloads among them suffer from some problems to fully achieve the cost effectiveness. The latency-critical workloads should show latencies in a stable manner, to be predicted, for strictly meeting QoSs. However, if they are executed with other workloads to save the cost, they experience QoS violation due to the contention for the hardware resources shared with co-location workloads. In order to guarantee QoSs and to improve the hardware resourse utilization, we proposed a memory bandwidth management method with an effective prediction model using machine learning. The prediction model estimates the amount of memory bandwidth that will be allocated to the latency-critical workload based on a REP decision tree. To construct this model, we first collect data and train the model with the data. The generated model can estimate the amount of memory bandwidth for meeting the SLO of the latency-critical workload no matter what batch processing workloads are collocated. The use of our approach achieves up to 99% SLO assurance and improves the server utilization up to 6.8x on average.
机译:随着云数据中心的急剧增长,由于维护和硬件资源的成本优势,各种应用程序已迁移到云数据中心。但是,其中关键延迟的工作负载存在一些问题,无法完全实现成本效益。对于延迟至关重要的工作负载,应严格预测QoS,以稳定的方式显示延迟。但是,如果将它们与其他工作负载一起执行以节省成本,则由于与同位工作负载共享的硬件资源的争用,它们会遇到QoS违规的情况。为了保证QoS并提高硬件资源利用率,我们提出了一种基于机器学习的具有有效预测模型的内存带宽管理方法。预测模型基于REP决策树估计将分配给对延迟至关重要的工作负载的内存带宽量。要构建此模型,我们首先收集数据并使用数据训练模型。无论并置了哪些批处理工作负载,生成的模型都可以估计用于满足关键延迟工作负载的SLO的内存带宽量。使用我们的方法可实现高达99%的SLO保证,并将服务器利用率平均提高到6.8倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号