首页> 外文会议>IEEE International Symposium on Olfaction and Electronic Nose >Multi-uav gas concentration map fusion using the image repair algorithm based on clustered directed diffusion model
【24h】

Multi-uav gas concentration map fusion using the image repair algorithm based on clustered directed diffusion model

机译:基于聚类定向扩散模型的图像修复算法的多气体浓度图融合

获取原文

摘要

concentration values were imported into Fluent and Matlab to draw a plurality of plane density sub-maps. For the unmeasured blank areas among the adjacent sub-maps, the image repair algorithm based on Clustered Directed Diffusion (CDD) model was used to repairing the sub-maps. Then the sub-maps are fused into a complete gas concentration map. The simulation results and Peak Signal to Noise Ratio(PSNR) show that the image repair algorithm based on CDD model can obtain satisfactory results for the regions with little change in concentration and a narrower blank area. The image repair algorithm based on CDD model can be used to repairing gas concentration maps to some extent.
机译:将浓度值导入Fluent和Matlab中以绘制多个平面密度子图。对于相邻子图之间未测量的空白区域,采用基于聚类定向扩散(CDD)模型的图像修复算法修复子图。然后将子图融合为完整的气体浓度图。仿真结果和峰值信噪比(PSNR)表明,基于CDD模型的图像修复算法在浓度变化较小,空白区域较窄的区域可以获得满意的结果。基于CDD模型的图像修复算法可以在一定程度上修复气体浓度图。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号