首页> 外文会议>IEEE International Symposium on Mixed and Augmented Reality Adjunct >Semantic Segmentation of Geometric Primitives in Dense 3D Point Clouds
【24h】

Semantic Segmentation of Geometric Primitives in Dense 3D Point Clouds

机译:密集3D点云中几何图元的语义分割

获取原文

摘要

This paper presents an approach to semantic segmentation and structural modeling from dense 3D point clouds. The core contribution is an efficient method for fitting of geometric primitives based on machine learning. First, the dense 3D point cloud is acquired together with RGB images on a mobile handheld device. Then, RANSAC is used to estimate the presence of geometric primitives, followed by an evaluation of their fit based on classification of the fitting parameters. Finally, the approach iterates over successive frames to optimize the fitting parameters or replace a detected primitive by a better fitting one. As a result, we obtain a semantic model of the scene consisting of a set of geometric primitives. We evaluate the approach on an extensive set of scenarios and show its plausibility in augmented reality applications.
机译:本文提出了一种从密集3D点云进行语义分割和结构建模的方法。核心贡献是基于机器学习的几何图元拟合的有效方法。首先,在移动手持设备上与RGB图像一起获取密集的3D点云。然后,使用RANSAC估计几何图元的存在,然后基于拟合参数的分类对其进行拟合评估。最后,该方法在连续的帧上进行迭代以优化拟合参数或通过更好的拟合来替换检测到的图元。结果,我们获得了由一组几何图元组成的场景的语义模型。我们在广泛的场景中评估该方法,并显示其在增强现实应用程序中的合理性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号